Advanced Type Features

Jeffrey Maddalon?

j.m.maddalon@nasa.gov
NASA

PVS Class, 2012

'Largely based on earlier talks by Rick Butler and Hanne Gottliebsen
Jeffrey Maddalon (NASA) Advanced Type Features PVS Class, 2012 1/30

Outline

© Uninterpreted Functions
© Dependent Types

© Parameterized Types
@ Poartial Functions

© Judgements

Jeffrey Maddalon (NASA) Advanced Type Features

Uninterpreted Functions
In PVS, functions can be defined without a “body.” These functions are
called uninterpreted.

floor(a: real): int

abs: [int -> nat]

which_quadrant(x: real, y: real): {i: nat | i >= 1 AND i <= 4}

When would you use an uninterpreted function?
e Different implementations (e.g. sorting)

@ The precise function is unknown, but its general characteristics are
known

@ The function represents unknown information (e.g. time of user input)
Types are important!
@ Only type information can be used in a proof

@ Should restrict the types as much as possible. A poor type choice is
abs: [int -> int]

Jeffrey Maddalon (NASA) Advanced Type Features PVS Class, 2012 3 /30

Dependent Types

Dependent types are types that depend on other values
real_stack: TYPE = [# size: nat,
elements: [{n: nat | n < size} -> reall

#]
mod(m: nat, d: posnat): {r: nat | r < d}
In this lecture...

@ We will explore how the prover can take advantage of dependent types

@ We will use the fioor_ceil theory from the prelude as a running
example

Jeffrey Maddalon (NASA) Advanced Type Features PVS Class, 2012 4 /30

Functional Attempt to define floor

First try, an interpreted function
x: VAR real

floor(x): int = x - fractional(x)

@ Ugh, now we have to define another function

Jeffrey Maddalon (NASA) Advanced Type Features PVS Class, 2012

5/ 30

Axiomatic attempt to define floor

x: VAR real

floor(x): int
floor_def: AXIOM floor(x) <= x & x < floor(x) + 1

This fully defines the key property of a ficor function, but
@ Must ensure that our axioms are consistent

» Why are inconsistent axioms bad?
» Warning: it is easy to miss problems here!

@ Must explicitly bring in the properties of ficor through the ficor_det
axiom

@ But on the plus side, we don’t have to prove axioms

Jeffrey Maddalon (NASA) Advanced Type Features PVS Class, 2012 6 /30

Prelude Theory floor ceil

x: VAR real
i: VAR integer

floor(x): {i | i <= x & x < i + 1}

The return type of ficor depends upon the argument x
@ The main property of fioor is contained in the return type
@ The return type is so constrained that it only has one element (and
we can prove this in PVS)
@ Thus, without providing a body, we have completely defined this
function

@ By putting type info in, the decision procedures can use this
information in the proofs automatically.

» Which command invokes the decision procedures?

@ ceiling is defined in a similar manner:
ceiling(x): {i | x <= i & i < x + 1}

Jeffrey Maddalon (NASA) Advanced Type Features PVS Class, 2012

7/30

Proving Key Properties

The assert command tries to prove a result automatically using the type

information.
floor_def: LEMMA floor(x) <= x & x < floor(x) + 1

Rule? (skosimp*)

{1} floor(x!1) <= x!1 & x!1 < floor(x!1l) + 1

{1} floor(x!1) <= x!1 & x!'1 < 1 + floor(x!1)

Rule? (assert)

Simplifying, rewriting, and recording with decision

{1} (FORALL (x: real): floor(x) <= x & x < floor(x) + 1)

Q.E.D.
Jeffrey Maddalon (NASA) Advanced Type Features PVS Class, 2012

8 /30

Observations on the Proof

@ The following properties of ficor are proved with (skosimp*) (assert):
floor_ceiling_reflectl: LEMMA floor(-x) = -ceiling(x)

floor_int : LEMMA floor(i) = i

ceiling_int : LEMMA ceiling(i) = i
floor_ceiling_int : LEMMA floor(i)=ceiling(i)
floor_split : LEMMA i = floor(i/2)+ceiling(i/2)
floor_within_1 : LEMMA x - floor(x) < 1
ceiling_within_1 : LEMMA ceiling(x) - x < 1

@ Sometimes a typepred floor(...) will be needed. This usually becomes
necessary when nonlinear arithmetic is present in the sequent

Jeffrey Maddalon (NASA) Advanced Type Features PVS Class, 2012 9 /30

Existence TCCs

PVS requires us to demonstrate that the return type is non-empty

% Existence TCC generated ... for floor(x): {i | i<=x & x<i+1}
floor_TCC1: OBLIGATION
(EXISTS (x1:[x:real -> {i: integer | i<=x & x<1+i}]): TRUE);

The proof relies on supplying a value that satisfies the type:
(inst + "lambda x: choose({i: integer | i<=x & x<1+i})")

Then, to show this set is non-empty, we rely on the following properties of

the reals located in the prelude:
lub_int: LEMMA

upper_bound? ((LAMBDA i, j: i <= j))(i, I)
=> EXISTS (j:(I)): least_upper_bound?((LAMBDA i,j:i<=3))(j,I)
axiom_of_archimedes: LEMMA EXISTS i: x < i

We will spare you the details, though you can get the proof by issuing m-x
edit-proof in the prelude.pvs buffer (M—X vpf)

Jeffrey Maddalon (NASA) Advanced Type Features PVS Class, 2012 10 / 30

Motivation for Parameterized Types

Sometimes dependent types are not enough. Let's say we want a bounded
array of an arbitrary size:

real_array: TYPE = [below(N) -> reall

PVS does not know what N is. Even if we add a variable declaration for N
the problem persists:

N: VAR posint
real_array: TYPE = [below(N) -> reall

Note, constant types are defined as expected

real_array_ten: TYPE = [below(10) -> real]

Jeffrey Maddalon (NASA) Advanced Type Features PVS Class, 2012 11 /30

Parameterized Types

There are two ways to use use N in a type declaration:

o By adding N as a theory parameter
arrays [N: posint] : THEORY
real_array: TYPE = [below(N) -> reall
o By adding N as a type parameter

arrays : THEORY
N: VAR posint
real_array(N): TYPE = [below(N) -> real]

@ What is the difference?

Jeffrey Maddalon (NASA) Advanced Type Features PVS Class, 2012 12 / 30

Scope!

Theory parameter N is known throughout the theory; there is only one N.
Information about N is implicit.

arrays [N: posint] : THEORY
real_array: TYPE = [below(N) -> reall

A: VAR real_array
P: pred[real_array]
lem: LEMMA FORALL A: P(4)

Type parameter N is not fixed within the theory. We can not declare a
global variable A as above, but we must qualify A and P fully
in each lemma:

arrays : THEORY
N: VAR posint
real_array(N): TYPE = [below(N) -> reall

lem: LEMMA FORALL (A:below_array(N)),
(P:pred[below_array(N)]): P(A)

Jeffrey Maddalon (NASA) Advanced Type Features PVS Class, 2012 13 / 30

Using Total Functions For Partial Specification

@ In PVS, all functions are total, so the domains should be suitably
restricted. For example:
div(x: real, y: {nz: real | nz /= 0}): real
@ Partial specification is useful. How can we emulate it?

x,y,z: VAR real
unspecified(x,y,z): real
faulty: VAR bool

component (x,y,z,faulty): real =
IF faulty THEN unspecified(x,y,z)
ELSE x*x + y*y + z*z
ENDIF

@ The uninterpreted function unspecified returns a value

@ But, we do not know anything about that value (except its type)

Jeffrey Maddalon (NASA) Advanced Type Features PVS Class, 2012 14 / 30

Equal Unspecifieds

@ If we are not careful, we can prove things we don’t mean

componentl(x,y,z,faulty): real =
IF faulty THEN unspecified(x,y,z)
ELSE x*x + y*y + z*z
ENDIF

component2(x,y,z,faulty): real =
IF faulty THEN unspecified(x,y,z)
ELSE 4xx + 4%y + 4%z
ENDIF

@ We probably didn't mean to say that if component1 and component2 are
both faulty then they produce the same value. That is, we can prove:

faultyl & faulty2 =>
componentl1(x,y,z,faultyl) = component2(x,y,z,faulty2)

@ Solve this with two unspecified functions: unspecifiedi and unspecified?2

@ But what about a distributed system where the same function is run
on multiple processors?

Jeffrey Maddalon (NASA) Advanced Type Features PVS Class, 2012 15 / 30

Another Method for Partial Specification

component_a(x,y,z,faulty): { w: real | NOT faulty =>

W = X*x + y*y + z*z}
component_b(x,y,z,faulty): { w: real | NOT faulty =>

W o= X*X + y*y + z¥z}

@ The dependent type mechanism is used to constrain the return type
of the function
@ But, only when faulty is FALSE

@ We cannot prove
component_a(x,y,z,faulty) = component_b(x,y,z,faulty)

o Why?

Jeffrey Maddalon (NASA) Advanced Type Features PVS Class, 2012 16 / 30

Motivation for Judgements?

An example based on the NASA mod library:
i,k: VAR int

j: VAR nonzero_integer
m: VAR posnat

mod(i,j): {k | abs(k) < abs(j)} =i - j * floor(i/j)

mod_pos: LEMMA mod(i,m) >= O AND mod(i,m) < m

mod_pos Says, if mod's second argument is positive, then the returned value is
@ non-negative
@ smaller than the second argument

Let's prove mod_pos

2PVS only uses the spelling judgement, an alternate English spelling is judgment
Jeffrey Maddalon (NASA) Advanced Type Features PVS Class, 2012 17 / 30

Proof of mod_pos

I _______
1 FORALL (i:integer, m:posnat): mod(i,m) >= O AND mod(i,m)<m
g P

Rule? (skosimp*)

{1} mod(i'1l, m!1) >= 0 AND mod(i!l, m!1) < m!1
Rule? (expand "mod")
{1} i1 - m!1 * floor(i!l / m!1) >= O AND
i1 - m!1 * floor(i!l / m!1) < m!1
Rule? (typepred "floor(i!l / m!1)")

{-1} floor(i!l / m!1) <= i!1 / m!1
{-2} i1 / m'1 <1+ floor(i!l / m!1)

[1] il - m!'1 * floor(i!l / m!1) >= 0 AND
i'1 - m'1 * floor(i'!'l / m!1) < m'i

What's the next step, any thoughts?

Jeffrey Maddalon (NASA) Advanced Type Features PVS Class, 2012 18 / 30

Proof of mod _pos (cont'd)

{-1} floor(i'l / m'!1) <= i1 / m'l

[1] il - m!'1 * floor(i!l / m!1) >= 0 AND
il - m!1 * floor(i!l / m!1) < m!1

Rule? (grind-reals)

div_mult_pos_le2 rewrites floor(i!l / m!1) <= i!l1l / m!1
to floor(i!l / m!1) * m!1 <= i!1

div_mult_pos_ltl rewrites i!l / m!1 < 1 + floor(i!l / m!1)
to i!l < floor(i!l / m!1) * m!1 + m!'1

div_mult_pos_le2 rewrites floor(i!l / m!1) <= i!1 / m!1
to floor(i!l / m!1) * m!l <= il

div_mult_pos_ltl rewrites i!l1 / m!1 < 1 + floor(i!l / m!1)
to i!'1 < floor(i!l / m!1) * m!1 + m!1

Applying GRIND-REALS,
Q.E.D

A total of 4 proof steps.

Jeffrey Maddalon (NASA) Advanced Type Features PVS Class, 2012 19 / 30

Why Judgements?

i,k: VAR int
m: VAR posnat

mod_pos: LEMMA mod(i,m) >= O AND mod(i,m) < m

Essentially, mod_pos describes the type of mod whenever the second
parameter is positive.

@ Would be nice if this were known to prover

@ Might eliminate some nuisance TCCs

Jeffrey Maddalon (NASA) Advanced Type Features PVS Class, 2012 20 / 30

Judgements

A JupceMenT supplies type information to the typechecker beyond what

comes from the function definition.

@ For mog, if the domain of the function is restricted, then the return

type is restricted.

i,k: VAR int
m: VAR posnat

mod_below: JUDGEMENT mod(i,m) HAS_TYPE below(m)

Once we have the mod below judgement, we can prove the mod pos lemma in

only three steps:

(skosimp*) (assert) (assert)
@ And we didn't have to explicitly bring in mod below

Or two steps if we bring in the judgement:

(skosimp*) (rewrite "mod_below")

Jeffrey Maddalon (NASA) Advanced Type Features

PVS Class, 2012

21 /30

No Free Lunch

PVS will create a TCC that requires us to prove the judgement is correct.
% Judgement subtype TCC generated (at line ...) for mod(i,m)
% expected type below(m)

% unfinished
mod_below: OBLIGATION FORALL (i,m): mod(i,m)>=0 AND mod(i,m)<m;

This proof is very similar to the original proof of mod pos.

Jeffrey Maddalon (NASA) Advanced Type Features PVS Class, 2012 22 /30

Unnamed Judgements

We may name judgements like we saw above, but PVS also allows
judgements to be unnamed as in

i,k: VAR int
j: VAR nonzero_integer
m: VAR posnat

mod(i,j): {k | abs(k) < abs(j)} =i - j * floor(i/j)
mod_pos: LEMMA mod(i,m) >= O AND mod(i,m) < m
JUDGEMENT mod(i,m) HAS_TYPE below(m)

@ Cannot refer directly to an unnamed judgement

@ Prover commands still apply it

@ Proof of mod_pos

(skosimp*) (assert) (assert)

Jeffrey Maddalon (NASA) Advanced Type Features PVS Class, 2012 23 /30

Judgements for Types

@ In the previous slides we have seen how to use a judgement to show
that an expression has a certain type.

@ JUDGEMENT can also be used to show that a type is a subtype of another.

zero_to_five: TYPE = {i:int | i>=0 AND i<= 5}
zero_to_ten: TYPE = {i:int | i>=0 AND i<=10}

JUDGEMENT zero_to_five SUBTYPE_OF zero_to_ten
posreal_is_nzreal: JUDGEMENT posreal SUBTYPE_OF nzreal

equiv_is_reflexive: JUDGEMENT (equivalence?)
SUBTYPE_OF (reflexive?)

@ Appropriate TCCs will be generated for each judgement

Jeffrey Maddalon (NASA) Advanced Type Features PVS Class, 2012 24 / 30

Motivation for Recursive Judgements

Let's say that we had a tail-recursive implementation of factorial.

factit(n,f:nat) : RECURSIVE nat =
IFn=20
THEN f£
ELSE factit(n-1,nx*f)
ENDIF
MEASURE n

And let's say that we wanted to prove that this definition is equal to the
existing definition.

IMPORTING reals@factorial

factit_factorial : LEMMA
FORALL(n:nat): factit(n,1) = factorial(n)

Jeffrey Maddalon (NASA) Advanced Type Features PVS Class, 2012 25 / 30

Proof of factit factorial

I _______
1 FORALL (n: nat): factit(n, 1) = factorial(n)

Rule? (induct "n"

Inducting on n on formula 1,

this yields 2 subgoals:

factit_factorial.l

{1} factit(0, 1) = factorial(0)

Rule? (expand* "factit" "factorial)

This completes the proof of factit_factorial.l.
factit_factorial.2 :

factit(j, 1) = factorial(j) IMPLIES
factit(j + 1, 1) = factorial(j + 1)

Rule? (skosimpx*)

Jeffrey Maddalon (NASA) Advanced Type Features PVS Class, 2012 26 / 30

Proof of factit factorial

{-1} factit(j!'1, 1) = factorial(j'l)

{1} factit(j'l + 1, 1) = factorial(j!l + 1)

Rule? (expand "factorial" 1)

[-1] factit(j!l, 1) = factorial(j'!l)

{1} factit(1 + j!1, 1) = factorial(j!1) + factorial(j!1) * j!1
Rule? (expand "factit" 1)

[-1] factit(j'l, 1) = factorial(j!1l)

{1} factit(j'!'1, 1 + j!1) = factorial(j!l) + factorial(j!l) * j!1

Rule? (replace -1 :dir RL :hide? T)

{1} factit(j'1, 1 + j!'1) = factit(j'1, 1) + factit(j!'1, 1) * j!1

What do we do now? What is the problem?

Jeffrey Maddalon (NASA) Advanced Type Features PVS Class, 2012 27 / 30

Key property of factit

The key property of factit for an arbitrary £ is

factit_interm : LEMMA
FORALL(n:nat, f:nat): factit(n,f) = f*factit(n, 1)

which is easily proven by induction.

With this result, we can prove factit_factorial

{1} factit(j!l, 1 + j!1) = factit(j!1l, 1) + factit(j'!1l, 1) * j'1
Rule? (rewrite "factit_interm")

This completes the proof of factit_factorial.2.

Q.E.D.

Jeffrey Maddalon (NASA) Advanced Type Features PVS Class, 2012 28 / 30

Key property of factit

We can encorporate this property into a JUDGEMENT

factit_jud : JUDGEMENT
factit(n,f:nat) HAS_TYPE {m : nat | m = fxfactorial(n)}

which is will generate an TCC obligation very similar to factit_interm.

With this judgement, we can prove factit_factorial

{1} factit(j!1, 1 + j!1) = factit(j!l, 1) + factit(j!1l, 1) * j'1
Rule? (assert)

This completes the proof of factit_factorial.2.

Q.E.D.

Jeffrey Maddalon (NASA) Advanced Type Features PVS Class, 2012

29 / 30

Key property of factit
Another form of this JUDGEMENT is

factit_jud : RECURSIVE JUDGEMENT
factit(n,f:nat) HAS_TYPE {m : nat | m = fxfactorial(n)}

Which is will generate two obligations:

factit_jud_TCC1: OBLIGATION
FORALL (f1, nl: nat, v: [[nat, nat] -> nat]):
(FORALL (n, f: nat): v(n, f) = f * factorial(n)) IMPLIES
nl = 0 IMPLIES f1 = f1 * factorial(nl);

factit_jud_TCC2: OBLIGATION
FORALL (f1, nl: nat, v: [[nat, nat] -> nat]):
(FORALL (n, f: nat): v(n, f) = f * factorial(n)) IMPLIES
NOT n1 = 0 IMPLIES v(nl - 1, n1 * f1) = f1 * factorial(nl);

Which are proven automatically!

The reason these proofs are much easier is that the type constraint is
recursively added to the TCCs.

Summary: If you have a recursive definition, consider using recursive
judgements.

Jeffrey Maddalon (NASA) Advanced Type Features PVS Class, 2012

30 / 30

	Uninterpreted Functions
	Dependent Types
	Parameterized Types
	Partial Functions
	Judgements

